RNG generace dungeonu

This commit is contained in:
2025-06-24 16:59:41 +02:00
parent 1cdde31d73
commit 9eb7cfa4d1
13 changed files with 200 additions and 537 deletions

View File

@@ -8,21 +8,21 @@ public class MapGenManager : MonoBehaviour
[SerializeField] private List<GameObject> mapPrefab = new List<GameObject>();
[SerializeField] private GameObject StartPoint;
[SerializeField] private GameObject EndPoint;
[Header("Player")]
[SerializeField] private GameObject Player;
[Header("Corridor Prefabs")]
[SerializeField] private GameObject CorridorStraight;
[SerializeField] private GameObject CorridorL;
/*[SerializeField] private GameObject CorridorL;
[SerializeField] private GameObject CorridorT;
[SerializeField] private GameObject CorridorCross;
[SerializeField] private GameObject CorridorEnd;
[SerializeField] private GameObject CorridorEnd;*/
[Header("Generation Settings")]
[SerializeField] private float minRoomDistance = 30f;
[SerializeField] private float maxRoomDistance = 50f;
[SerializeField] private float corridorWidth = 5f;
[SerializeField] private int RoomDistance = 5;
[SerializeField] private int minRoomsNumber = 3;
[SerializeField] private int maxRoomsNumber = 7;
private List<Vector3> roomPositions = new List<Vector3>();
private List<GameObject> placedRooms = new List<GameObject>();
@@ -34,540 +34,93 @@ public class MapGenManager : MonoBehaviour
private void MapGen()
{
// Clear previous rooms and positions
roomPositions.Clear();
placedRooms.Clear();
// Start position should be aligned to grid
Vector3 startPos = new Vector3(0, 0, 0); // Grid aligned at origin
// Add Start Point
Vector3 startPos = new Vector3(0, 0, 0);
GameObject startPoint = Instantiate(StartPoint, startPos, Quaternion.identity, transform);
roomPositions.Add(startPos);
placedRooms.Add(startPoint);
// Instantiate the player at the starting position
GameObject player = Instantiate(Player, new Vector3(startPos.x, 1, startPos.z), Quaternion.identity, transform);
int roomCount = Random.Range(3, 7);
// Generate a random number of rooms
int roomCount = Random.Range(minRoomsNumber, maxRoomsNumber);
// Place Generate Rooms
for (int i = 0; i < roomCount; i++)
{
Vector3 roomPos = GetRandomGridPosition();
Vector3 roomPos = GetGridPosition();
GameObject roomPrefab = mapPrefab[Random.Range(0, mapPrefab.Count)];
GameObject room = Instantiate(roomPrefab, roomPos, Quaternion.identity, transform);
placedRooms.Add(room);
roomPositions.Add(roomPos);
}
GameObject endPoint = Instantiate(EndPoint, GetRandomGridPosition(), Quaternion.identity, transform);
// Add End Point
GameObject endPoint = Instantiate(EndPoint, GetGridPosition(), Quaternion.identity, transform);
roomPositions.Add(endPoint.transform.position);
placedRooms.Add(endPoint);
// Generate corridors to connect rooms
GenerateCorridors();
// Add some dead ends for more dynamic layouts
AddDeadEndCorridors();
}
private void GenerateCorridors()
{
// Create a minimum spanning tree to ensure all rooms are connected
List<(int, int)> edges = CreateMinimumSpanningTree();
// Place corridors between connected rooms
foreach (var edge in edges)
// Create corridors between rooms
for (int i = 0; i < roomPositions.Count - 1; i++)
{
ConnectRoomsWithCorridor(roomPositions[edge.Item1], roomPositions[edge.Item2]);
}
}
private List<(int, int)> CreateMinimumSpanningTree()
{
// Using Prim's algorithm to generate a minimum spanning tree
List<(int, int)> mstEdges = new List<(int, int)>();
List<int> connectedNodes = new List<int>();
List<int> unconnectedNodes = new List<int>();
// Start with node 0 (start room)
for (int i = 0; i < roomPositions.Count; i++)
{
unconnectedNodes.Add(i);
}
// Start with first node
connectedNodes.Add(unconnectedNodes[0]);
unconnectedNodes.RemoveAt(0);
// Continue until all nodes are connected
while (unconnectedNodes.Count > 0)
{
float minDistance = float.MaxValue;
int closestConnected = -1;
int closestUnconnected = -1;
// Find shortest edge between a connected and unconnected node
foreach (int connected in connectedNodes)
{
foreach (int unconnected in unconnectedNodes)
{
float distance = Vector3.Distance(roomPositions[connected], roomPositions[unconnected]);
if (distance < minDistance)
{
minDistance = distance;
closestConnected = connected;
closestUnconnected = unconnected;
}
}
}
// Add the edge to our MST
mstEdges.Add((closestConnected, closestUnconnected));
// Move the node from unconnected to connected
connectedNodes.Add(closestUnconnected);
unconnectedNodes.Remove(closestUnconnected);
}
return mstEdges;
}
private void ConnectRoomsWithCorridor(Vector3 startRoom, Vector3 endRoom)
{
// Calculate the grid-based path between rooms
List<Vector3> path = CalculateGridPath(startRoom, endRoom);
// Place corridor pieces along the path
for (int i = 0; i < path.Count - 1; i++)
{
PlaceCorridorSegment(path[i], path[i + 1]);
}
}
private List<Vector3> CalculateGridPath(Vector3 start, Vector3 end)
{
List<Vector3> path = new List<Vector3>();
path.Add(start);
// Determine if we go horizontal first or vertical first (50/50 chance)
bool horizontalFirst = Random.value < 0.5f;
Vector3 current = start;
if (horizontalFirst)
{
// Move horizontally first, then vertically
while (Mathf.Abs(current.x - end.x) >= 5)
{
float step = current.x < end.x ? 5 : -5;
current = new Vector3(current.x + step, 0, current.z);
path.Add(current);
}
while (Mathf.Abs(current.z - end.z) >= 5)
{
float step = current.z < end.z ? 5 : -5;
current = new Vector3(current.x, 0, current.z + step);
path.Add(current);
}
}
else
{
// Move vertically first, then horizontally
while (Mathf.Abs(current.z - end.z) >= 5)
{
float step = current.z < end.z ? 5 : -5;
current = new Vector3(current.x, 0, current.z + step);
path.Add(current);
}
while (Mathf.Abs(current.x - end.x) >= 5)
{
float step = current.x < end.x ? 5 : -5;
current = new Vector3(current.x + step, 0, current.z);
path.Add(current);
}
}
// Add the end position if it's not already there
if (Vector3.Distance(current, end) >= 5)
{
path.Add(end);
}
return path;
}
private void PlaceCorridorSegment(Vector3 start, Vector3 end)
{
// Determine corridor type based on connecting rooms
Vector3 direction = end - start;
GameObject corridorPrefab = CorridorStraight; // Default to straight
Quaternion rotation = Quaternion.identity;
Vector3 position = (start + end) / 2;
// Calculate direction for rotation
if (direction.x > 0) // East
{
rotation = Quaternion.Euler(0, 90, 0);
}
else if (direction.x < 0) // West
{
rotation = Quaternion.Euler(0, 90, 0);
}
else if (direction.z > 0) // North
{
rotation = Quaternion.Euler(0, 0, 0);
}
else if (direction.z < 0) // South
{
rotation = Quaternion.Euler(0, 0, 0);
}
// Check if this segment is part of a turn, T-junction, or crossing
List<Direction> connectingDirections = GetConnectingDirections(end);
// Determine corridor type and rotation based on connections
if (connectingDirections.Count == 1) // Straight corridor or dead end
{
corridorPrefab = CorridorStraight;
}
else if (connectingDirections.Count == 2)
{
// Check if it's an L-turn
if (IsLTurn(direction, connectingDirections))
{
corridorPrefab = CorridorL;
// Adjust rotation for L-turn
rotation = GetLTurnRotation(direction, connectingDirections);
}
}
else if (connectingDirections.Count == 3) // T-junction
{
corridorPrefab = CorridorT;
// Adjust rotation for T-junction
rotation = GetTJunctionRotation(direction, connectingDirections);
}
else if (connectingDirections.Count >= 4) // Cross junction
{
corridorPrefab = CorridorCross;
}
Instantiate(corridorPrefab, position, rotation, transform);
}
private enum Direction { North, East, South, West }
private List<Direction> GetConnectingDirections(Vector3 position)
{
// Check which directions have corridors or rooms from this position
List<Direction> connections = new List<Direction>();
// Check in each cardinal direction
Vector3[] offsets = new Vector3[] {
new Vector3(0, 0, 5), // North
new Vector3(5, 0, 0), // East
new Vector3(0, 0, -5), // South
new Vector3(-5, 0, 0) // West
};
Direction[] directions = new Direction[] {
Direction.North,
Direction.East,
Direction.South,
Direction.West
};
for (int i = 0; i < offsets.Length; i++)
{
Vector3 checkPos = position + offsets[i];
// Check if there's a room at this position
bool hasConnection = roomPositions.Any(rp => Vector3.Distance(rp, checkPos) < 2.5f);
// If no room, check for corridor (simplified - in a full implementation,
// you'd track placed corridors separately)
if (!hasConnection)
{
// For simplicity, assume there's a corridor if it's part of a path we've calculated
// In a complete implementation, you'd track corridor positions
}
if (hasConnection)
{
connections.Add(directions[i]);
}
}
return connections;
}
private bool IsLTurn(Vector3 incomingDirection, List<Direction> connections)
{
// Check if connections form an L shape (90-degree turn)
if (connections.Count != 2) return false;
Direction incoming = VectorToDirection(incomingDirection);
Direction opposite = GetOppositeDirection(incoming);
// If one of the connections is opposite to the incoming direction,
// then it's a straight corridor, not an L-turn
return !connections.Contains(opposite);
}
private Direction VectorToDirection(Vector3 vector)
{
if (vector.x > 0) return Direction.East;
if (vector.x < 0) return Direction.West;
if (vector.z > 0) return Direction.North;
return Direction.South;
}
private Direction GetOppositeDirection(Direction dir)
{
switch (dir)
{
case Direction.North: return Direction.South;
case Direction.East: return Direction.West;
case Direction.South: return Direction.North;
case Direction.West: return Direction.East;
default: return Direction.North;
}
}
private Quaternion GetLTurnRotation(Vector3 incomingDirection, List<Direction> connections)
{
// Calculate rotation for L-turns based on the directions it connects
Direction incoming = VectorToDirection(incomingDirection);
// Find the other direction (not the incoming and not the opposite of incoming)
Direction other = connections.Find(d => d != incoming && d != GetOppositeDirection(incoming));
switch (incoming)
{
case Direction.North:
return other == Direction.East ? Quaternion.Euler(0, 0, 0) : Quaternion.Euler(0, 270, 0);
case Direction.East:
return other == Direction.North ? Quaternion.Euler(0, 90, 0) : Quaternion.Euler(0, 0, 0);
case Direction.South:
return other == Direction.East ? Quaternion.Euler(0, 270, 0) : Quaternion.Euler(0, 180, 0);
case Direction.West:
return other == Direction.North ? Quaternion.Euler(0, 180, 0) : Quaternion.Euler(0, 90, 0);
default:
return Quaternion.identity;
}
}
private Quaternion GetTJunctionRotation(Vector3 incomingDirection, List<Direction> connections)
{
// Calculate rotation for T-junctions
Direction incoming = VectorToDirection(incomingDirection);
Direction opposite = GetOppositeDirection(incoming);
// If the connection doesn't include the opposite direction, the "T" points in that direction
if (!connections.Contains(opposite))
{
switch (opposite)
{
case Direction.North: return Quaternion.Euler(0, 0, 0);
case Direction.East: return Quaternion.Euler(0, 90, 0);
case Direction.South: return Quaternion.Euler(0, 180, 0);
case Direction.West: return Quaternion.Euler(0, 270, 0);
}
}
// If it does contain the opposite, find the missing direction
Direction[] allDirections = new Direction[] { Direction.North, Direction.East, Direction.South, Direction.West };
Direction missing = allDirections.First(d => !connections.Contains(d));
switch (missing)
{
case Direction.North: return Quaternion.Euler(0, 180, 0);
case Direction.East: return Quaternion.Euler(0, 270, 0);
case Direction.South: return Quaternion.Euler(0, 0, 0);
case Direction.West: return Quaternion.Euler(0, 90, 0);
default: return Quaternion.identity;
}
}
private void AddDeadEndCorridors()
{
// Add some random dead ends for more interesting level design
int deadEndCount = Random.Range(1, 4); // 1-3 dead ends
for (int i = 0; i < deadEndCount; i++)
{
// Pick a random room to extend from
int roomIndex = Random.Range(0, roomPositions.Count);
Vector3 roomPos = roomPositions[roomIndex];
// Pick a random direction
Vector3[] directions = new Vector3[] {
new Vector3(5, 0, 0), // East
new Vector3(-5, 0, 0), // West
new Vector3(0, 0, 5), // North
new Vector3(0, 0, -5) // South
};
Vector3 direction = directions[Random.Range(0, directions.Length)];
// Create a dead end corridor (1-3 segments long)
int segmentCount = Random.Range(1, 4);
Vector3 currentPos = roomPos;
for (int j = 0; j < segmentCount; j++)
{
Vector3 nextPos = currentPos + direction;
// Make sure we're not placing corridors where rooms exist
bool canPlace = true;
foreach (Vector3 roomPosition in roomPositions)
{
if (Vector3.Distance(nextPos, roomPosition) < 5)
{
canPlace = false;
break;
}
}
if (canPlace)
{
PlaceCorridorSegment(currentPos, nextPos);
currentPos = nextPos;
}
else
{
break;
}
}
// Place an end cap at the last position if it's not overlapping with a room
bool endCapCanBePlaced = true;
foreach (Vector3 roomPosition in roomPositions)
{
if (Vector3.Distance(currentPos, roomPosition) < 5)
{
endCapCanBePlaced = false;
break;
}
}
if (endCapCanBePlaced && segmentCount > 0)
{
// Calculate rotation based on direction
Quaternion rotation = Quaternion.identity;
if (direction.x > 0) rotation = Quaternion.Euler(0, 90, 0);
else if (direction.x < 0) rotation = Quaternion.Euler(0, 270, 0);
else if (direction.z > 0) rotation = Quaternion.Euler(0, 0, 0);
else if (direction.z < 0) rotation = Quaternion.Euler(0, 180, 0);
Instantiate(CorridorEnd, currentPos, rotation, transform);
}
}
}
private Vector3 GetRandomGridPosition()
{
Vector3 lastRoomPos = roomPositions[roomPositions.Count - 1];
// Calculate min and max distances in grid units (multiples of 5)
int minGridDistance = Mathf.CeilToInt(minRoomDistance / 5);
int maxGridDistance = Mathf.FloorToInt(maxRoomDistance / 5);
// Get random grid cell offset
int xGridOffset = 0;
int zGridOffset = 0;
Vector3 roomPos = Vector3.zero;
// Make sure the position is valid
int attempts = 0;
int maxAttempts = 100; // Prevent infinite loops
do {
// Generate random offsets directly as grid units
xGridOffset = Random.Range(-maxGridDistance, maxGridDistance + 1);
zGridOffset = Random.Range(-maxGridDistance, maxGridDistance + 1);
// Ensure we respect minimum distance
if (Mathf.Abs(xGridOffset) < minGridDistance && Mathf.Abs(zGridOffset) < minGridDistance)
{
// Force minimum distance by picking a direction
if (Random.value < 0.5f)
xGridOffset = Random.value < 0.5f ? minGridDistance : -minGridDistance;
else
zGridOffset = Random.value < 0.5f ? minGridDistance : -minGridDistance;
}
// Convert grid units to world position (multiply by 5)
roomPos = new Vector3(
lastRoomPos.x + (xGridOffset * 5),
0,
lastRoomPos.z + (zGridOffset * 5)
Vector3 startRoomPos = roomPositions[i];
PrefabSize startRoom = placedRooms[i].GetComponent<PrefabSize>();
Vector3 endRoomPos = roomPositions[i + 1];
PrefabSize endRoom = placedRooms[i + 1].GetComponent<PrefabSize>();
Vector3 firstCorridorPos = new Vector3(
startRoomPos.x + startRoom.prefabSize.x / 2,
startRoomPos.y,
startRoomPos.z
);
attempts++;
} while (!IsValidPos(roomPos) && attempts < maxAttempts);
// If we couldn't find a valid position, use fallback
if (attempts >= maxAttempts)
{
Debug.LogWarning("Couldn't find valid room position after " + maxAttempts + " attempts. Using best approximation.");
roomPos = FindNearestValidGridPosition(lastRoomPos);
Vector3 lastCorridorPos = new Vector3(
endRoomPos.x - endRoom.prefabSize.x / 2,
endRoomPos.y,
endRoomPos.z
);
CreateCorridor(firstCorridorPos, lastCorridorPos);
}
return roomPos;
}
private Vector3 FindNearestValidGridPosition(Vector3 startPos)
{
// Define min and max grid distances in grid units (not world units)
int minGridDistance = Mathf.CeilToInt(minRoomDistance / 5);
int maxGridDistance = Mathf.FloorToInt(maxRoomDistance / 5);
// Check each grid distance in increasing order
for (int distance = minGridDistance; distance <= maxGridDistance; distance++)
{
// Try cardinal directions first (more likely to have space)
int[] directions = { distance, -distance };
// Try horizontal directions
foreach (int x in directions)
{
Vector3 testPos = new Vector3(startPos.x + (x * 5), 0, startPos.z);
if (IsValidPos(testPos))
return testPos;
}
// Try vertical directions
foreach (int z in directions)
{
Vector3 testPos = new Vector3(startPos.x, 0, startPos.z + (z * 5));
if (IsValidPos(testPos))
return testPos;
}
// Try diagonals
foreach (int x in directions)
{
foreach (int z in directions)
{
Vector3 testPos = new Vector3(startPos.x + (x * 5), 0, startPos.z + (z * 5));
if (IsValidPos(testPos))
return testPos;
}
}
}
// If all else fails, return a position at minimum distance
return new Vector3(startPos.x + (minGridDistance * 5), 0, startPos.z);
}
private bool IsValidPos(Vector3 pos)
private Vector3 GetGridPosition()
{
foreach (Vector3 roomPos in roomPositions)
Vector3 lastRoomPos = roomPositions[roomPositions.Count - 1];
// Convert grid units to world position
Vector3 roomPos = new Vector3(
lastRoomPos.x + RoomDistance,
lastRoomPos.y,
lastRoomPos.z
);
return roomPos;
}
private void CreateCorridor(Vector3 start, Vector3 end)
{
// Calculate the distance
float distance = Vector3.Distance(start, end);
PrefabSize corridorSize = CorridorStraight.GetComponent<PrefabSize>();
// Calculate the number of corridors needed
int corridorCount = Mathf.FloorToInt(distance / corridorSize.prefabSize.x);
Debug.Log($"Creating {corridorCount} corridors from {start} to {end}");
// Create corridors
for (int i = 0; i < corridorCount; i++)
{
if (Vector3.Distance(pos, roomPos) < minRoomDistance)
{
return false;
}
Vector3 pos = new Vector3(
start.x + i * corridorSize.prefabSize.x + corridorSize.prefabSize.x * 0.5f,
start.y,
start.z
);
Quaternion rotation = Quaternion.Euler(0, 90, 0);
GameObject corridor = Instantiate(CorridorStraight, pos, rotation, transform);
}
return true;
}
}